Deakin University
Browse

File(s) under permanent embargo

Coordination of cell cycle progression and mitotic spindle assembly involves histone H3 lysine 4 methylation by set1/COMPASS

journal contribution
posted on 2017-01-01, 00:00 authored by T H Beilharz, P F Harrison, D M Miles, M M See, U M M Le, Ming Kalanon, M J Curtis, Qambar HasanQambar Hasan, J Saksouk, T Margaritis, F Holstege, V Geli, Bernhard DichtlBernhard Dichtl
Methylation of histone H3 lysine 4 (H3K4) by Set1 complex/COMPASS is a hallmark of eukaryotic chromatin, but it remains poorly understood how this post-translational modification contributes to the regulation of biological processes like the cell cycle. Here, we report a H3K4 methylation-dependent pathway in Saccharomyces cerevisiae that governs toxicity toward benomyl, a microtubule destabilizing drug. Benomyl-sensitive growth of wild-type cells required mono- and dimethylation of H3K4 and Pho23, a PHD-containing subunit of the Rpd3L complex. Δset1 and Δpho23 deletions suppressed defects associated with ipl1-2 aurora kinase mutant, an integral component of the spindle assembly checkpoint during mitosis. Benomyl resistance of Δset1 strains was accompanied by deregulation of all four tubulin genes and the phenotype was suppressed by tub2-423 and Δtub3 mutations, establishing a genetic link between H3K4 methylation and microtubule function. Most interestingly, sine wave fitting and clustering of transcript abundance time series in synchronized cells revealed a requirement for Set1 for proper cell-cycle-dependent gene expression and Δset1 cells displayed delayed entry into S phase. Disruption of G1/S regulation in Δmbp1 and Δswi4 transcription factor mutants duplicated both benomyl resistance and suppression of ipl1-2 as was observed with Δset1 Taken together our results support a role for H3K4 methylation in the coordination of cell-cycle progression and proper assembly of the mitotic spindle during mitosis.

History

Journal

Genetics

Volume

205

Issue

1

Pagination

185 - 199

Publisher

Genetics Society of America

Location

Austin, Tex.

ISSN

0016-6731

eISSN

1943-2631

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2017, the Genetics Society of America