Deakin University
Browse

Cortical and trabecular bone at the forearm show different adaptation patterns in response to tennis playing

journal contribution
posted on 2004-01-01, 00:00 authored by Gaele Ducher, S Prouteau, D Courteix, C L Benhamou
Bone responds to impact-loading activity by increasing its size and/or density. The aim of this study was to compare the magnitude and modality of the bone response between cortical and trabecular bone in the forearms of tennis players. Bone area, bone mineral content (BMC), and bone mineral density (BMD) of the ulna and radius were measured by dual-energy X-ray absorptiometry (DXA) in 57 players (24.5 ± 5.7 yr old), at three sites: the ultradistal region (50% trabecular bone), the mid-distal regions, and third-distal (mainly cortical bone). At the ultradistal radius, the side-to-side difference in BMD was larger than in bone area (8.4 ± 5.2% and 4.9 ± 4.0%, respectively, p < 0.01). In the cortical sites, the asymmetry was lower (p < 0.01) in BMD than in bone area (mid-distal radius: 4.0 ± 4.3% vs 11.7 ± 6.8%; third-distal radius: 5.0 ± 4.8% vs 8.4 ± 6.2%). The asymmetry in bone area explained 33% of the variance of the asymmetry in BMC at the ultradistal radius, 66% at the mid-distal radius, and 53% at the third-distal radius. The ulna displayed similar results. Cortical and trabecular bone seem to respond differently to mechanical loading. The first one mainly increases its size, whereas the second one preferentially increases its density.

History

Journal

Journal of clinical densitometry

Volume

7

Season

Winter

Pagination

399 - 405

Location

Amsterdam, The Netherlands

ISSN

1094-6950

eISSN

1559-0747

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal

Copyright notice

2004, International Society for Clinical Densitometry

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC