Deakin University
Browse

File(s) under embargo

Coupled electro-chemical-soil model to evaluate the influence of soil aeration on underground metal pipe corrosion

Version 2 2024-06-02, 23:44
Version 1 2023-08-25, 03:11
journal contribution
posted on 2024-06-02, 23:44 authored by RM Azoor, RN Deo, Nick BirbilisNick Birbilis, JK Kodikara
A mechanistic understanding of the process of underground corrosion is important for modeling pipeline deterioration. In this study, a time-dependent multiscale numerical model incorporating electrochemistry and soil hydrology is developed. The model realistically simulates soil moisture and aeration conditions and their influence on anodic/cathodic activity without prior definition. In this manner, both micro- and macrocell corrosion and their evolution with time are simulated along with the effects of differential aeration. The model was validated with low-alloy cast iron corrosion data from the United States National Bureau of Standards corrosion exposure study. The effect of soil aeration in controlling soil corrosiveness was simulated with suitable boundary conditions. It was demonstrated that macrocells arising due to differential aeration can lead to elevated levels of corrosion in pipelines, especially in fairly aerated soils.

History

Journal

Corrosion

Volume

74

Pagination

1177-1191

Location

Houston, Tex.

ISSN

0010-9312

eISSN

1938-159X

Language

English

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

11

Publisher

National Association of Corrosion Engineers