Deakin University

File(s) under embargo

Creatine and pregnancy outcomes: a prospective cohort study of creatine metabolism in low-risk pregnant females

journal contribution
posted on 2024-03-20, 04:39 authored by DL de Guingand, KR Palmer, Damien CallahanDamien Callahan, RJ Snow, ML Davies-Tuck, SJ Ellery
BACKGROUND: Physiological adaptations during pregnancy alter nutrient and energy metabolism. Creatine may be important for maintaining cellular energy homeostasis throughout pregnancy. However, the impact of pregnancy on endogenous and exogenous creatine availability has never been comprehensively explored. OBJECTIVES: To undertake a prospective cohort study and determine the physiological ranges of creatine and associated metabolites throughout human pregnancy. METHODS: Females with a singleton low-risk pregnancy were recruited at an Australian health service. Maternal blood and urine were collected at 5-time points from 10-36 weeks of gestation, and cord blood and placental samples were collected at birth. Creatine and associated amino acids and metabolites of creatine synthesis were analyzed. Dietary data were captured to determine effects of exogenous creatine intake. Associations between creatine metabolism and neonatal growth parameters were examined. RESULTS: Two hundred and eighty-two females were included. Maternal plasma creatine remained stable throughout pregnancy [β: -0.003 μM; 95% confidence interval (CI): -0.07, 0.07; P = 0.94], though urinary creatine declined in late gestation (β: 0.38 μM/mmol/L creatinine (CRN); 95% CI: -0.47, -0.29; P < 0.0001). Plasma guanidinoacetate (GAA; the precursor to creatine during endogenous synthesis) fell from 10-29 weeks of gestation before rising until birth (β: -0.38 μM/mmol/L CRN; 95% CI: -0.47, -0.29; P < 0.0001). Urinary GAA followed an opposing pattern (β: 2.52 μM/mmol/L CRN; 95% CI: 1.47, 3.58, P < 0.001). Animal protein intake was positively correlated with maternal plasma creatine until ∼32 weeks of gestation (β: 0.07-0.18 μM; 95% CI: 0.006, 0.25; P ≤ 0.001). There were no links between creatine and neonatal growth, but increased urinary GAA in early pregnancy was associated with a slight reduction in head circumference at birth (β: -0.01 cm; 95% CI: -0.02, -0.004; P = 0.003). CONCLUSIONS: Although maternal plasma creatine concentrations were highly conserved, creatine metabolism appears to adjust throughout pregnancy. An ability to maintain creatine concentrations through diet and shifts in endogenous synthesis may impact fetal growth. This trial was registered at [registry name] as ACTRN12618001558213.



The American journal of clinical nutrition






United States







Publication classification

C1 Refereed article in a scholarly journal




Elsevier BV