File(s) under permanent embargo
Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization
journal contribution
posted on 2018-06-26, 00:00 authored by Linpeng Fan, Jingliang LiJingliang Li, Zengxiao CaiZengxiao Cai, Xungai WangThe continuous evolution of tissue engineering scaffolds has been driven by the desire to recapitulate structural features and functions of the natural extracellular matrix (ECM). However, it is still an extreme challenge to create a three-dimensional (3D) scaffold with both aligned nanofibers and aligned interconnected macrochannels to mimic the ECM of anisotropic tissues. Here, we develop a facile strategy to create such a scaffold composed of oriented nanofibers and interconnected macrochannels in the same direction, with various natural polymers typically used for tissue regeneration. The orientation of nanofibers and interconnected macrochannels can be easily tuned by manipulating ice crystallization. The scaffold demonstrates both structural and functional features similar to the natural ECM of anisotropic tissues. Taking silk fibroin as an example, the scaffold with radially oriented nanofibers and interconnected macrochannels is more efficient for capturing cells and promoting the growth of both nonadherent embryonic dorsal root ganglion neurons (DRGs) and adherent human umbilical vein endothelial cells (HUVECs) compared to the widely used scaffold types. Interestingly, DRGs and neurites on the SF scaffold demonstrate a 3D growth mode similar to that of natural nerve tissues. Furthermore, the coaligned nanofibers and macrochannels of the scaffold can direct HUVECs to assemble into blood vessel-like structures and their collagen deposition in their arrangement direction. The strategy could inspire the design and development of multifunctional 3D scaffolds with desirable structural features for engineering different tissues.
History
Journal
ACS nanoVolume
12Issue
6Pagination
5780 - 5790Publisher
American Chemical SocietyLocation
Washington, D.C.Publisher DOI
eISSN
1936-086XLanguage
engPublication classification
C Journal article; C1 Refereed article in a scholarly journalCopyright notice
2018, American Chemical SocietyUsage metrics
Categories
No categories selectedKeywords
anisotropic 3D scaffoldsaligned nanofibersaligned macrochannels and macroporessilk fibroin nanofibersalginate nanofibersgelatin nanofibersneuritesvascularizationScience & TechnologyPhysical SciencesTechnologyChemistry, MultidisciplinaryChemistry, PhysicalNanoscience & NanotechnologyMaterials Science, MultidisciplinaryChemistryScience & Technology - Other TopicsMaterials ScienceTISSUE ENGINEERING SCAFFOLDSCELLFABRICATIONTENDONSILKMORPHOGENESISINFILTRATIONREGENERATIONSTATE