Deakin University
Browse

File(s) under permanent embargo

Damage identification of steel beams using local and global methods

journal contribution
posted on 2012-05-01, 00:00 authored by Ying Wang, H Hao
Structural condition monitoring methods can be generally classified as local and global. While the global method needs only a small number of sensors to measure the low-frequency structural vibration properties, the acquired information is often not sufficiently sensitive to minor damages in a structure. Local methods, on the other hand, could be very sensitive to minor damages but their detection range is usually small. To overcome the drawbacks and take advantage of both methods, an integrated condition monitoring system has been recently developed for structural damage detection, which combines guided wave and structural vibration tests. This study aims at finding a viable damage identification method for steel structures by using this system. First, a spectral element modelling method is developed, which can simulate both wave propagation and structural vibration properties. Then the model is used in updating analysis to identify crack damage. Extensive numerical simulations and model updating works are conducted. The experimental and numerical results suggest that simply combining the objective functions cannot provide better structural damage identification. A two-stage damage identification scheme is more suitable for identifying damage in steel beams.

History

Journal

Advances in structural engineering

Volume

15

Issue

5

Pagination

807 - 824

Publisher

Multi-Science Publishing

Location

London, England

ISSN

1369-4332

eISSN

2048-4011

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2012, Multi-Science Publishing