Deakin University
Browse

File(s) not publicly available

Deformable image registration using a cue-aware deep regression network

journal contribution
posted on 2022-09-30, 01:42 authored by X Cao, J Yang, Jun ZhangJun Zhang, Q Wang, P T Yap, D Shen
Significance: Analysis of modern large-scale, multicenter or diseased data requires deformable registration algorithms that can cope with data of diverse nature. Objective: We propose a novel deformable registration method, which is based on a cue-aware deep regression network, to deal with multiple databases with minimal parameter tuning. Methods: Our method learns and predicts the deformation field between a reference image and a subject image. Specifically, given a set of training images, our method learns the displacement vector associated with a pair of reference-subject patches. To achieve this, we first introduce a key-point truncated-balanced sampling strategy to facilitate accurate learning from the image database of limited size. Then, we design a cue-aware deep regression network, where we propose to employ the contextual cue, i.e., the scale-adaptive local similarity, to more apparently guide the learning process. The deep regression network is aware of the contextual cue for accurate prediction of local deformation. Results and Conclusion: Our experiments show that the proposed method can tackle various registration tasks on different databases, giving consistent good performance without the need of manual parameter tuning, which could be applicable to various clinical applications.

History

Journal

IEEE Transactions on Biomedical Engineering

Volume

65

Issue

9

Pagination

1900 - 1911

ISSN

0018-9294

eISSN

1558-2531

Usage metrics

    Research Publications

    Exports