Deakin University
Browse

Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity

Version 2 2024-06-03, 20:18
Version 1 2015-06-29, 11:54
journal contribution
posted on 2024-06-03, 20:18 authored by Y Han, S Meyer, Y Dkhissi, K Weber, Jenny PringleJenny Pringle, U Bach, L Spiccia, YB Cheng
The stability of encapsulated planar-structured CH3NH3PbI3 (MAPbI3) perovskite solar cells (PSCs) was investigated under various simulated environmental conditions. The tests were performed under approximately one sun (100 mW cm-2) illumination, varying temperature (up to 85 °C cell temperature) and humidity (up to 80%). The application of advanced sealing techniques improved the device stability, but all devices showed significant degradation after prolonged aging at high temperature and humidity. The degradation mechanism was studied by post-mortem analysis of the disassembled cells using SEM and XRD. This revealed that the degradation was mainly due to the decomposition of MAPbI3, as a result of reaction with H2O, and the subsequent reaction of hydroiodic acid, formed during MAPbI3 decomposition, with the silver back contact electrode layer.

History

Journal

Journal of materials chemistry a

Volume

3

Pagination

8139-8147

Location

Cambridge, Eng.

ISSN

2050-7488

eISSN

2050-7496

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2015, Royal Society of Chemistry

Issue

15

Publisher

Royal Society of Chemistry