Deletion of Plasmodium falciparum Protein RON3 Affects the Functional Translocation of Exported Proteins and Glucose Uptake
journal contribution
posted on 2024-09-20, 03:10authored byLeanne M Low, Yvonne Azasi, Emma S Sherling, Matthias Garten, Joshua Zimmerberg, Takafumi Tsuboi, Joseph Brzostowski, Jianbing Mu, Michael J Blackman, Louis H Miller
The malarial parasite within the erythrocyte is surrounded by two membranes.
Plasmodium
translocon of exported proteins (PTEX) in the parasite vacuolar membrane critically transports proteins from the parasite to the erythrocytic cytosol and membrane to create protein infrastructure important for virulence. The components of PTEX are stored within the dense granule, which is secreted from the parasite during invasion. We now describe a protein, RON3, from another invasion organelle, the rhoptry, that is also secreted during invasion. We find that RON3 is required for the protein transport function of the PTEX and for glucose transport from the RBC cytoplasm to the parasite, a function thought to be mediated by PTEX component EXP2.