The problem of dimensional defects in aluminum die-casting is widespread throughout the foundry industry and their detection is of paramount importance in maintaining product quality. Due to the unpredictable factory environment and metallic, with highly reflective, nature of aluminum die-castings, it is extremely hard to estimate true dimensionality of the die-casting, autonomously. In this work, we propose a novel robust 3D reconstruction algorithm capable of reconstructing dimensionally accurate 3D depth models of the aluminum die-castings. The developed system is very simple and cost effective as it consists of only a stereo camera pair and a simple fluorescent light. The developed system is capable of estimating surface depths within the tolerance of 1.5 mm. Moreover, the system is invariant to illuminative variations and orientation of the objects in the input image space, which makes the developed system highly robust. Due to its hardware simplicity and robustness, it can be implemented in different factory environments without a significant change in the setup.
History
Journal
International journal of wavelets, multiresolution and information processing