File(s) under permanent embargo
Design of multi-view based email classification for IoT systems via semi-supervised learning
journal contribution
posted on 2019-02-15, 00:00 authored by W Li, W Meng, Z Tan, Yang XiangSuspicious emails are one big threat for Internet of Things (IoT) security, which aim to induce users to click and then redirect them to a phishing webpage. To protect IoT systems, email classification is an essential mechanism to classify spam and legitimate emails. In the literature, most email classification approaches adopt supervised learning algorithms that require a large number of labeled data for classifier training. However, data labeling is very time consuming and expensive, making only a very small set of data available in practice, which would greatly degrade the effectiveness of email classification. To mitigate this problem, in this work, we develop an email classification approach based on multi-view disagreement-based semi-supervised learning. The idea behind is that multi-view method can offer richer information for classification, which is often ignored by the literature. The use of semi-supervised learning can help leverage both labeled and unlabeled data. In the evaluation, we investigate the performance of our proposed approach with two datasets and in a real network environment. Experimental results demonstrate that the use of multi-view data can achieve more accurate email classification than the use of single-view data, and that our approach is more effective as compared to several existing similar algorithms.
History
Journal
Journal of network and computer applicationsVolume
128Pagination
56 - 63Publisher
ElsevierLocation
Amsterdam, The NetherlandsPublisher DOI
ISSN
1084-8045eISSN
1095-8592Language
engPublication classification
C1.1 Refereed article in a scholarly journalCopyright notice
2018, Elsevier Ltd.Usage metrics
Keywords
Email classificationSemi-supervised learningMulti-view dataDisagreement-based learningIoT securityScience & TechnologyTechnologyComputer Science, Hardware & ArchitectureComputer Science, Interdisciplinary ApplicationsComputer Science, Software EngineeringComputer ScienceINTRUSION DETECTIONTRUST MANAGEMENTSPAM DETECTIONNETWORKERADistributed Computing