File(s) not publicly available

Determination of peak expiratory flow

journal contribution
posted on 1993-01-01, 00:00 authored by S Kano, D L Burton, C J Lanteri, Peter SlyPeter Sly
It is still unknown whether peak expiratory flow (PEF) is determined by 'wave speed' flow limitation in the airways. To investigate the influences of airway mechanical properties on PEF, five healthy adults performed maximal forced expiratory effort (MFEE) manoeuvres, in the standard manner and following breathholds at total lung capacity (TLC) of 2 s and 10 s. Oesophageal pressure (Poes) was measured as an index of respiratory effort. Subjects also performed a MFEE following a 10 s breathhold during which intrathoracic pressure was voluntarily raised by a Valsalva manoeuvre, which would increase transmural pressure and cross-sectional area of the extrathoracic airway. Addition MFEEs were performed with the neck fully flexed and extended, to change longitudinal tracheal tension. In separate studies, PEF was measured with a spirometer and with a pneumotachograph. Breathholds at TLC (2 s and 10 s), and neck flexion reduced PEF by a mean of 9.8% (SD 2.9%), 9.6% (SD 1.6%), and 8.7% (SD 2.8%), respectively, when measured with the spirometer. The same pattern of results was seen when measured with the pneumotachograph. These reductions occurred despite similar respiratory effort. Voluntarily raising intrathoracic pressure during a 10 s breathhold did not reverse a fall in PEF. MFEE manoeuvre with neck extension did not result in an increase in PEF, the group mean % changes being -3.0% (SD 5.0%). We conclude that these results do not allow the hypothesis that 'wave-speed' (V̇ws) is reached at PEF to be rejected. A breathhold at TLC could increase airway wall compliance by allowing stress-relaxation of the airway, thus reducing the 'V̇ws' achievable.



European Respiratory Journal






1347 - 1352