File(s) under permanent embargo
Diagnosis of the redox levels of TCNQF4 compounds using vibrational spectroscopy
journal contribution
posted on 2014-07-01, 00:00 authored by Naomi Haworth, J Lu, N Vo, T H Le, C D Thompson, A M Bond, L L MartinThe vibrational spectroscopy of TCNQF4, TCNQF41- and TCNQF42- has been investigated by means of density functional theory. Band assignments in infrared and Raman spectra have been clarified and a series of diagnostics developed for redox level characterisation of TCNQF4 compounds. In the C£C stretching region (1460-1600 cm-1), TCNQF40 and TCNQF 41- show two bands, with the more energetic being at 1600 cm-1 in TCNQF40 and at approximately 1535 cm-1 in TCNQF41-; in TCNQF42- both modes absorb below 1500 cm-1, often merging to give a single band. In the C-F and endocyclic C-C stretching region (1290 and 1360 cm-1), TCNQF40 and TCNQF41- show strong bands, whereas TCNQF42- absorbs weakly or not at all. (Additional bands, e.g. from co-crystallised solvent molecules, may complicate this region.) In the nitrile stretching region (2000-2250 cm-1), modes are highly sensitive to nitrile coordination by metal cations. All three redox levels can produce bands above 2200 cm -1, however bands below 2150 cm-1 are usually due to TCNQF42-. This sensitivity to coordination is likely to affect the spectra of many organic molecular ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.