Deakin University

File(s) under permanent embargo

Differential effects of arginine, glutamate and phosphoarginine on Ca2+-activation properties of muscle fibres from crayfish and rat

journal contribution
posted on 2004-10-01, 00:00 authored by D Jame, Jan WestJan West, P Dooley, D Stephenson
The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute (“test”) or not (“control”). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l-1) significantly shifted the force–pCa curve by 0.08–0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9–10 mmol l-1) induced a significant shift of the force–pCa curve by 0.18–0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force–pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36–40 mmol l-1), like arginine affected the force–pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08–0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.



Journal of muscle research and cell motility






497 - 508


Chapman and Hall


London, England







Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2005, Springer