Deakin University
Browse

File(s) under permanent embargo

Disease-associated change in an amphibian life-history trait

Version 2 2024-06-04, 05:53
Version 1 2017-08-18, 19:18
journal contribution
posted on 2024-06-04, 05:53 authored by BC Scheele, LF Skerratt, DA Hunter, SC Banks, JC Pierson, Don DriscollDon Driscoll, PG Byrne, L Berger
Emerging pathogens can drive evolutionary shifts in host life-history traits, yet this process remains poorly documented in vertebrate hosts. Amphibian chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is the worst recorded wildlife disease and has caused the extinction of over 100 species across multiple continents. A similar number of additional species have experienced mass declines and Bd remains a major source of mortality in many populations of declined species now persisting with the pathogen. Life-history theory predicts that increased extrinsic mortality in Bd-infected populations may alter amphibian life-history traits, but this has not been examined. Here, we investigate whether population Bd status is associated with age and size at maturity by comparing long-exposed Bd-infected populations, Bd-free populations, and museum specimens collected prior to Bd emergence for the endangered Australian frog Litoria verreauxii alpina. We show that Bd-infected populations have a higher proportion of males that mature at 1 year of age, and females that mature at 2 years of age, compared to Bd-free populations. Earlier maturation was associated with reduced size at maturity in males. Consistent with life-history theory, our findings may represent an adaptive evolutionary shift towards earlier maturation in response to high Bd-induced mortality. To our knowledge, this study provides the first evidence for a post-metamorphic Bd-associated shift in an amphibian life-history trait. Given high mortality in other Bd-challenged species, we suggest that chytridiomycosis may be a substantial new selection pressure shaping life-history traits in impacted amphibian species across multiple continents.

History

Journal

Oecologia

Volume

184

Pagination

825-833

Location

Berlin, Germany

ISSN

0029-8549

eISSN

1432-1939

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2017, Springer-Verlag GmbH Germany

Issue

4

Publisher

Springer