Deakin University
Browse

File(s) under permanent embargo

Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries

journal contribution
posted on 2016-07-10, 00:00 authored by N D Rosedhi, N H Idris, Md Mokhlesur RahmanMd Mokhlesur Rahman, M F M Din, J Wang
The high voltage LiNi0.5Mn1.5O4 cathode with a disordered spinel structure is synthesized by a glycine-assisted low-temperature reaction follows by a thermal treatment at 750 °C, 850 °C, and 950 °C for 12 h. Glycine is used as a chelating agent for the first time to build required environment for shaping the precursor of LiNi0.5Mn1.5O4 materials. The microstructure and morphology of the LiNi0.5Mn1.5O4 product are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, and transmission electron microscopy. The sample prepares at 750 °C reveals small particles with well-defined crystals as confirmed by electron microscopy. Electrochemical results demonstrate that LiNi0.5Mn1.5O4 electrode anneal at 750 °C (compare to other two samples) delivers the highest reversible capacity of 110 mAh g-1 at 0.2C after 100 cycles with good rate capability. The enhanced electrochemical performance could be attributed to the smaller particle sizes as well as well-defined crystals which provide a directional and shorter diffusion path length for Li+ transportation within the crystals.

History

Journal

Electrochimica acta

Volume

206

Pagination

374 - 380

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

0013-4686

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2016, Elsevier