Deakin University
Browse

File(s) under permanent embargo

Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties

Version 2 2024-06-05, 06:04
Version 1 2019-12-09, 11:31
journal contribution
posted on 2024-06-05, 06:04 authored by Pejman Heidarian, Abbas KouzaniAbbas Kouzani, Akif KaynakAkif Kaynak, Mariana PaulinoMariana Paulino, Bijan Nasri-Nasrabadi, Russell VarleyRussell Varley
Dynamic hydrogels are prepared by either dynamic covalent bonds or supramolecular chemistry. Herein, we develop a dynamic hydrogel by combining both dynamic covalent bonds and supramolecular chemistry that exhibits environmentally adaptive self-healing and pH-tuning properties. To do so, we prepared a gelatin–nanopolysaccharide mixed hydrogel containing pyrogallol/catechol groups and trivalent metal ions. The as-prepared hydrogels are able to heal damage inflicted on them under acidic (pH 3 and 6), neutral (pH 7), and basic (pH 9) environments. The mechanism of healing at acidic and neutral pHs is dominated by coordination bonds between pyrogallol/catechol groups of tannic acid and ferric ions, whilst Schiff-base reaction between amines from gelatin and dialdehyde-modified cellulose nanocrystals dominates the formation of dynamic hydrogels at basic pH. Self-healing mechanism of the hydrogel at all pHs occurred at ambient temperature without any external stimuli. The hydrogels also showed different mechanical, electrical, self-healing, and self-adhesiveness properties in different pH levels. Furthermore, the hydrogels showed printability and injectability at pH 6.

History

Journal

Cellulose

Volume

27

Pagination

1407-1422

Location

Dordrecht, The Netherlands

ISSN

0969-0239

eISSN

1572-882X

Language

eng

Publication classification

C1 Refereed article in a scholarly journal, C Journal article

Copyright notice

2019, Springer Nature B.V.

Publisher

Springer Science and Business Media LLC