File(s) not publicly available
Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries
journal contribution
posted on 2023-02-20, 01:06 authored by Nicolas Goujon, M Lahnsteiner, DA Cerrón-Infantes, HM Moura, D Mantione, MM Unterlass, D MecerreyesEnergy storage will be a primordial actor of the ecological transition initiated in the energy and transport sectors. As such, innovative approaches to design high-performance electrode materials are crucial for the development of the next generation of batteries. Herein, a novel dual redox-active and porous polyimide network (MTA-MPT), based on mellitic trianhydride (MTA) and 3,7-diamino-N-methylphenothiazine (MPT) monomers, is proposed for applications in both high energy density lithium batteries and symmetric all-organic batteries. The MTA-MPT porous polyimide was synthesized using a novel environmentally-friendly hydrothermal polymerization method. Rooted in its dual redox proprieties, the MTA-MPT porous polyimide exhibits a high theoretical capacity making it a very attractive cathode material for high energy density battery applications. The cycling performance of this novel electrode material was assessed in both high energy density lithium batteries and light-weight symmetric all-organic batteries, displaying excellent rate capability and long-term cycling stability.
History
Journal
Materials HorizonsLocation
EnglandPublisher DOI
ISSN
2051-6347eISSN
2051-6355Language
EnglishPublication classification
C1.1 Refereed article in a scholarly journalPublisher
ROYAL SOC CHEMISTRYUsage metrics
Categories
Keywords
Science & TechnologyPhysical SciencesTechnologyChemistry, MultidisciplinaryMaterials Science, MultidisciplinaryChemistryMaterials ScienceROCKING-CHAIRSTORAGE7 Affordable and Clean EnergyMaterials Engineering not elsewhere classifiedMacromolecular and Materials Chemistry not elsewhere classifiedChemical Engineering not elsewhere classified