Deakin University
Browse

File(s) under permanent embargo

Dynamically searching for a domain for protein function prediction

journal contribution
posted on 2013-01-01, 00:00 authored by Jingyu HouJingyu Hou, Yongqing Jiang
The availability of large amounts of protein-protein interaction (PPI) data makes it feasible to use computational approaches to predict protein functions. The base of existing computational approaches is to exploit the known function information of annotated proteins in the PPI data to predict functions of un-annotated proteins. However, these approaches consider the prediction domain (i.e. the set of proteins from which the functions are predicted) as unchangeable during the prediction procedure. This may lead to valuable information being overwhelmed by the unavoidable noise information in the PPI data when predicting protein functions, and in turn, the prediction results will be distorted. In this paper, we propose a novel method to dynamically predict protein functions from the PPI data. Our method regards the function prediction as a dynamic process of finding a suitable prediction domain, from which representative functions of the domain are selected to predict functions of un-annotated proteins. Our method exploits the topological structural information of a PPI network and the semantic relationship between protein functions to measure the relationship between proteins, dynamically select a suitable prediction domain and predict functions. The evaluation on real PPI datasets demonstrated the effectiveness of our proposed method, and generated better prediction results.

History

Journal

Journal of bioinformatics and computational biology

Volume

11

Issue

4

Pagination

1 - 20

Publisher

Imperial College Press

Location

London, England

ISSN

0219-7200

eISSN

1757-6334

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC