Deakin University
Browse

File(s) under embargo

EEG microstates in early-to-middle childhood show associations with age, biological sex, and alpha power

Version 2 2024-06-03, 01:27
Version 1 2023-11-06, 00:39
journal contribution
posted on 2024-06-03, 01:27 authored by Aron HillAron Hill, NW Bailey, R Zomorrodi, I Hadas, M Kirkovski, S Das, Jarrad LumJarrad Lum, Peter EnticottPeter Enticott
AbstractElectroencephalographic (EEG) microstates can provide a unique window into the temporal dynamics of large‐scale brain networks across brief (millisecond) timescales. Here, we analysed fundamental temporal features of microstates extracted from the broadband EEG signal in a large (N = 139) cohort of children spanning early‐to‐middle childhood (4–12 years of age). Linear regression models were used to examine if participants' age and biological sex could predict the temporal parameters GEV, duration, coverage, and occurrence, for five microstate classes (A–E) across both eyes‐closed and eyes‐open resting‐state recordings. We further explored associations between these microstate parameters and posterior alpha power after removal of the 1/f‐like aperiodic signal. The microstates obtained from our neurodevelopmental EEG recordings broadly replicated the four canonical microstate classes (A to D) frequently reported in adults, with the addition of the more recently established microstate class E. Biological sex served as a significant predictor in the regression models for four of the five microstate classes (A, C, D, and E). In addition, duration and occurrence for microstate E were both found to be positively associated with age for the eyes‐open recordings, while the temporal parameters of microstates C and E both exhibited associations with alpha band spectral power. Together, these findings highlight the influence of age and sex on large‐scale functional brain networks during early‐to‐middle childhood, extending understanding of neural dynamics across this important period for brain development.

History

Journal

Human Brain Mapping

Pagination

1-15

Location

London, Eng.

ISSN

1065-9471

eISSN

1097-0193

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Publisher

Wiley