Deakin University
Browse

File(s) under permanent embargo

Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation: potential as therapeutic targets

journal contribution
posted on 2006-03-01, 00:00 authored by B Atkinson, Karen DwyerKaren Dwyer, K Enjyoji, S C Robson
Extracellular nucleotide P2-receptor-mediated effects on platelets, leukocytes and endothelium are modulated by ecto-nucleotidases. These ecto-enzymes hydrolyze extracellular nucleotides to the respective nucleosides. The dominant ecto-nucleotidase expressed by the endothelium, by monocytes and vascular smooth muscle cells is CD39/NTPDase1. Ecto-nucleotidase biochemical activity of CD39 is lost at sites of acute vascular injury, such as in ischemia reperfusion and immune graft rejection. CD39L(Like)1/NTPDase2, a related protein, is associated with the basolateral surface of endothelium, the adventitia of vessels and microvascular pericytes. CD39/NTPDase1 hydrolyzes both tri- and diphosphonucleosides and blocks platelet aggregation responses to ADP. In contrast, CD39L1/NTPDase2, a preferential nucleoside triphosphatase, activates platelets by preferentially converting ATP to ADP, the major agonist of platelet P2 receptors. Spatial and temporal expression of NTPDases in the vasculature appears to control platelet activation, thrombus size and stability by regulating phosphohydrolytic activity and consequent P2 receptor signaling. Constitutively circulating microparticles appear to be associated with functional NTPDases, and accumulation of these at sites of vascular injury might influence local thrombus formation and evolution. The phenotype of the cd39-null mouse is in keeping with disordered thromboregulation with heightened susceptibility to inflammatory vasculary reactions, increased permeability and high levels of tissue fibrin. Paradoxically, these mutant mice also exhibit a bleeding phenotype with differential platelet P2Y1 desensitization. Over-expression of CD39 at sites of vascular injury and inflammation by adenoviral vectors, by transgenesis or by the use of pharmacological modalities with soluble derivatives has been shown to have major potential in several animal models tested to date. Future clinical applications will involve the development of new therapeutic strategies to various inflammatory vascular diseases and in transplantation. © 2006 Elsevier Inc. All rights reserved.

History

Journal

Blood cells, molecules, and diseases

Volume

36

Issue

2

Pagination

217 - 222

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

1079-9796

Language

eng

Publication classification

C1.1 Refereed article in a scholarly journal