A series of field surveys were carried out on two permanent pools of the upper Glenelg River in SW Victoria, Australia. One was representative of the wider and deeper pools while the other was representative of the more-narrow and shallower pools. Both pools showed a typical seasonal cycle of warm, brackish, oxygen-poor, summer conditions and cool, oxygen-rich, low-salinity, winter conditions. The summer salinity increases were larger than expected, suggesting possible saline groundwater inflow from unidentified springs. Both pools contained anoxic water in their deeper sections but this was permanent only in the deeper pool. A simple model of the flushing rate of such anoxic pools subject to flows, such as environmental flow releases, was developed, based on an energy balance between the potential energy required to lift the anoxic layer and the kinetic energy derived from the river flow. The results were tested against and in agreement with the field measurements. The model also suggests that the anoxic layers are resilient to all but the largest environmental flows.