Deakin University
Browse

File(s) under permanent embargo

Effect of exercise on protein kinase C activity and localization in human skeletal muscle

journal contribution
posted on 2004-12-01, 00:00 authored by A Rose, B Michell, B Kemp, Mark Hargreaves
To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle  ergometer exercise for 40 min at 76±1% the peak pulmonary O2 uptake (VO2peak), with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of a ∼50 kDa protein. There were no changes in conventional PKC (cPKC) or PKCθ activities; however, atypical PKC (aPKC) activity was ∼70% higher at 5 and 40 min, and aPKC expression and Thr410/403 phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCα, PKCδ, PKCθ and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKCθ, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.

History

Journal

The journal of physiology

Volume

561

Issue

3

Pagination

861 - 870

Publisher

Blackwell Publishing Ltd

Location

London, England

ISSN

0022-3751

eISSN

1469-7793

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2004, The Physiological Society

Usage metrics

    Research Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC