Effect of pulmonary blood flow on measurements of respiratory mechanics using the interrupter technique
Version 2 2024-06-13, 15:18Version 2 2024-06-13, 15:18
Version 1 2022-03-23, 09:22Version 1 2022-03-23, 09:22
journal contribution
posted on 2024-06-13, 15:18authored byNJ Freezer, CJ Lanteri, PD Sly
The relationship between respiratory mechanics, changes in pulmonary blood flow (PBF), pulmonary arterial pressure, and left atrial pressure is unclear. Conventional methods for the measurement of respiratory mechanics model the respiratory system as a single compartment, which may not adequately represent the respiratory system in a diseased state. The interrupter technique models the respiratory system as two compartments, with the "flow resistance" of the conducting airways and chest wall (Raw) considered separately from Pdif, a measure of the viscoelastic properties of the lung and chest wall, together with any pendelluft present. The respiratory mechanics of 15 infants in the first year of life were studied during cardiac catheterization with the use of conventional methods and the interrupter technique. The infants had a PBF-to-systemic blood flow ratio ranging from 0.6 to 4.0:1. The specific dynamic compliance of the respiratory system was not related to the PBF; however, there was a significant relationship between PBF and the total resistance of the respiratory system (Rrs) [analysis of variance (ANOVA) F = 5.69, P < 0.05], Raw (ANOVA, F = 12.30, P < 0.01), and Pdif (ANOVA, F = 3.79, P < 0.05). Rrs increased significantly with an increase in mean left atrial pressure (ANOVA, F = 6.92, P < 0.05); however, dynamic compliance, Raw, and Pdif did not. These results suggest that the relationship between Rrs and PBF is due an increase in the resistive properties of the conducting airways and tissue components.