Deakin University
Browse

File(s) not publicly available

Effect of pulmonary blood flow on measurements of respiratory mechanics using the interrupter technique

Version 2 2024-06-13, 15:18
Version 1 2022-03-23, 09:22
journal contribution
posted on 2024-06-13, 15:18 authored by NJ Freezer, CJ Lanteri, PD Sly
The relationship between respiratory mechanics, changes in pulmonary blood flow (PBF), pulmonary arterial pressure, and left atrial pressure is unclear. Conventional methods for the measurement of respiratory mechanics model the respiratory system as a single compartment, which may not adequately represent the respiratory system in a diseased state. The interrupter technique models the respiratory system as two compartments, with the "flow resistance" of the conducting airways and chest wall (Raw) considered separately from Pdif, a measure of the viscoelastic properties of the lung and chest wall, together with any pendelluft present. The respiratory mechanics of 15 infants in the first year of life were studied during cardiac catheterization with the use of conventional methods and the interrupter technique. The infants had a PBF-to-systemic blood flow ratio ranging from 0.6 to 4.0:1. The specific dynamic compliance of the respiratory system was not related to the PBF; however, there was a significant relationship between PBF and the total resistance of the respiratory system (Rrs) [analysis of variance (ANOVA) F = 5.69, P < 0.05], Raw (ANOVA, F = 12.30, P < 0.01), and Pdif (ANOVA, F = 3.79, P < 0.05). Rrs increased significantly with an increase in mean left atrial pressure (ANOVA, F = 6.92, P < 0.05); however, dynamic compliance, Raw, and Pdif did not. These results suggest that the relationship between Rrs and PBF is due an increase in the resistive properties of the conducting airways and tissue components.

History

Journal

Journal of Applied Physiology

Volume

74

Pagination

1083-1088

Location

United States

ISSN

8750-7587

eISSN

1522-1601

Language

English

Publication classification

C1.1 Refereed article in a scholarly journal

Issue

3

Publisher

AMER PHYSIOLOGICAL SOC

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC