Nanostructured TiO 2 films were prepared on a variety of substrates, including acid frosted soda-lime glass, acid frosted soda-lime glass pre-coated with a SiO 2 barrier layer, commercial glazed ceramic tile and 6061 aluminum alloy. For each substrate, the phase and microstructure of the films were determined to be exclusively anatase. However, the growth of the TiO 2 crystallites, the film morphology and thickness varied substantially with substrate. Thermal stress, resulting from the difference in the coefficient of thermal expansion between the substrates and the films, contributed to the formation and propagation of cracks. This was most clearly observed on the films deposited on SiO 2 barrier layer and aluminum. The photocatalytic activity of the TiO 2 films deposited on glass with and without SiO 2 barrier layer, ceramic, and aluminum was studied via UV decolorization of methyl orange in aqueous solution. Complete degradation rapidly occurred on the TiO 2 /glass and TiO 2 /SiO 2 barrier layer films, but not with the ceramic or metal substrates. It appears that the photocatalytic activity of the films deposited on aluminum and ceramic substrates was affected by the quantity and the size of the anatase crystallites. The aluminum substrate promoted the formation of TiO 2 films with the largest anatase crystallite size, exhibiting a cracked morphology, where as the ceramic substrate resulted in the formation of TiO 2 films with large crystallite size in an island morphology.