Deakin University
gwini-efficacyofmelatoninwith-2018.pdf (1.94 MB)

Efficacy of melatonin with behavioural sleep-wake scheduling for delayed sleep-wake phase disorder: A double-blind, randomised clinical trial

Download (1.94 MB)
Version 3 2024-06-18, 20:19
Version 2 2024-06-06, 10:45
Version 1 2020-04-14, 12:59
journal contribution
posted on 2024-06-18, 20:19 authored by TL Sletten, M Magee, JM Murray, CJ Gordon, N Lovato, DJ Kennaway, SM Gwini, DJ Bartlett, SW Lockley, LC Lack, RR Grunstein, SMW Rajaratnam
Background: Delayed Sleep-Wake Phase Disorder (DSWPD) is characterised by sleep initiation insomnia when attempting sleep at conventional times and difficulty waking at the required time for daytime commitments. Although there are published therapeutic guidelines for the administration of melatonin for DSWPD, to our knowledge, randomised controlled trials are lacking. This trial tested the efficacy of 0.5 mg melatonin, combined with behavioural sleep-wake scheduling, for improving sleep initiation in clinically diagnosed DSWPD patients with a delayed endogenous melatonin rhythm relative to patient-desired (or -required) bedtime (DBT). Methods: This randomised, placebo-controlled, double-blind clinical trial was conducted in an Australian outpatient DSWPD population. Following 1-wk baseline, clinically diagnosed DSWPD patients with delayed melatonin rhythm relative to DBT (salivary dim light melatonin onset [DLMO] after or within 30 min before DBT) were randomised to 4-wk treatment with 0.5 mg fast-release melatonin or placebo 1 h before DBT for at least 5 consecutive nights per week. All patients received behavioural sleep-wake scheduling, consisting of bedtime scheduled at DBT. The primary outcome was actigraphic sleep onset time. Secondary outcomes were sleep efficiency in the first third of time in bed (SE T1) on treatment nights, subjective sleep-related daytime impairment (Patient Reported Outcomes Measurement Information System [PROMIS]), PROMIS sleep disturbance, measures of daytime sleepiness, clinician-rated change in illness severity, and DLMO time. Findings: Between September 13, 2012 and September 1, 2014, 307 participants were registered; 116 were randomised to treatment (intention-to-treat n = 116; n = 62 males; mean age, 29.0 y). Relative to baseline and compared to placebo, sleep onset occurred 34 min earlier (95% confidence interval [CI] −60 to −8) in the melatonin group. SE T1 increased; PROMIS sleep-related impairment, PROMIS sleep disturbance, insomnia severity, and functional disability decreased; and a greater proportion of patients showed more than minimal clinician-rated improvement following melatonin treatment (52.8%) compared to placebo (24.0%) (P < 0.05). The groups did not differ in the number of nights treatment was taken per protocol. Post-treatment DLMO assessed in a subset of patients (n = 43) was not significantly different between groups. Adverse events included light-headedness, daytime sleepiness, and decreased libido, although rates were similar between treatment groups. The clinical benefits or safety of melatonin with long-term treatment were not assessed, and it remains unknown whether the same treatment regime would benefit patients experiencing DSWPD sleep symptomology without a delay in the endogenous melatonin rhythm. Conclusions: In this study, melatonin treatment 1 h prior to DBT combined with behavioural sleep-wake scheduling was efficacious for improving objective and subjective measures of sleep disturbances and sleep-related impairments in DSWPD patients with delayed circadian phase relative to DBT. Improvements were achieved largely through the sleep-promoting effects of melatonin, combined with behavioural sleep-wake scheduling. Trial registration: This trial was registered with the Australian New Zealand Clinical Trials Registry, ACTRN12612000425897.



PLoS Medicine



Article number





San Francisco, CA

Open access

  • Yes







Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2018, Sletten et al.