Deakin University
Browse

File(s) under permanent embargo

Efficient Video Coding Using Visual Sensitive Information for HEVC Coding Standard

Version 2 2024-06-06, 03:41
Version 1 2022-12-15, 03:17
journal contribution
posted on 2024-06-06, 03:41 authored by PK Podder, M Paul, Manzur MurshedManzur Murshed
The latest high efficiency video coding (HEVC) standard introduces a large number of inter-mode block partitioning modes. The HEVC reference test model (HM) uses partially exhaustive tree-structured mode selection, which still explores a large number of prediction unit (PU) modes for a coding unit (CU). This impacts on encoding time rise which deprives a number of electronic devices having limited processing resources to use various features of HEVC. By analyzing the homogeneity, residual, and different statistical correlation among modes, many researchers speed-up the encoding process through the number of PU mode reduction. However, these approaches could not demonstrate the similar rate-distortion (RD) performance with the HM due to their dependency on existing Lagrangian cost function (LCF) within the HEVC framework. In this paper, to avoid the complete dependency on LCF in the initial phase, we exploit visual sensitive foreground motion and spatial salient metric (FMSSM) in a block. To capture its motion and saliency features, we use the dynamic background and visual saliency modeling, respectively. According to the FMSSM values, a subset of PU modes is then explored for encoding the CU. This preprocessing phase is independent from the existing LCF. As the proposed coding technique further reduces the number of PU modes using two simple criteria (i.e., motion and saliency), it outperforms the HM in terms of encoding time reduction. As it also encodes the uncovered and static background areas using the dynamic background frame as a substituted reference frame, it does not sacrifice quality. Tested results reveal that the proposed method achieves 32% average encoding time reduction of the HM without any quality loss for a wide range of videos.

History

Journal

IEEE Access

Volume

6

Pagination

75695-75708

Location

Manhatten, N.Y.

ISSN

2169-3536

eISSN

2169-3536

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Publisher

Institute of Electrical and Electronics Engineers

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC