Deakin University
Browse

Electrospun spinel LiNi0.5Mn1.5O4 hierarchical nanofibers as 5 v cathode materials for lithium-ion batteries

journal contribution
posted on 2013-01-01, 00:00 authored by J Liu, W Liu, S Ji, Y Zhou, Peter HodgsonPeter Hodgson, Yuncang Li
Spinel LiNi0.5Mn1.5O4 hierarchical nanofibers with diameters of 200–500 nm and lengths of up to several tens of micrometers were synthesized using low-cost starting materials by electrospinning combined with annealing. Well-separated nanofiber precursors impede the growth and agglomeration of Li-Ni0.5Mn1.5O4 particles. The hierarchical nanofibers were constructed from attached LiNi0.5Mn1.5O4 nanooctahedrons with sizes ranging from 200 to 400 nm. It is proven that these Li-Ni0.5Mn1.5O4 hierarchical nanofibers exhibit a favorable electrochemical performance. At a 0.5C (coulombic) rate, it shows an initial discharge capacity of 133 mAhg_1 with a capacity retention over 94% after 30 cycles. Even at 2, 5, 10, and 15C rates, it can still deliver a discharge capacity of 115, 100, 90, and 80 mAhg_1, respectively. Compared with self-aggregated nanooctahedrons synthesized using common sol–gel methods, the LiNi0.5Mn1.5O4 hierarchical nanofibers exhibit a much higher capacity. This is owing to the fact that the self-aggregation of the unique nanooctahedron-in-nanofiber structure has been greatly reduced because of the attachment of nanopolyhedrons in the long nanofibers. This unique microstructured cathode results in the large effective contact areas of the active materials, conductive additives and fully realize the advantage of nanomaterial-based cathodes.

History

Journal

ChemPlusChem

Volume

78

Issue

7

Pagination

636 - 641

Publisher

Wiley

Location

London, England

ISSN

2192-6506

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC