Enhancement of ethyl propionate synthesis by poly (AAc-co-HPMA-cl-MBAm)-immobilized pseudomonas aeruginosa MTCC-4713, exposed to Hg 2+ and NH 4 + ions
journal contribution
posted on 2006-06-01, 00:00authored byS Kanwar, H Verma, S Pathak, R Kaushal, Y Kumar, Madan Verma, S Chimni, G Chauhan
A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65°C in 3 h in the presence of a molecular sieve (3 Ã). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 or NH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel-bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg 2+ or NH 4+ ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).