mathesh-enzymepowered-2019.pdf (7.33 MB)
Enzyme-powered nanomotors with controlled size for biomedical applications
journal contribution
posted on 2019-09-24, 00:00 authored by J Sun, M Mathesh, W Li, D A Wilson© 2019 American Chemical Society. Self-propelled motors have been developed with promising potential for medical applications. However, most of them have a size range at the microscale, which limits their further research for in vivo experiments. Previously, our group developed nanoscaled motors with a size of around 400 nm with several merits, for example, delivering both hydrophobic and hydrophilic drugs/proteins, using biocompatible fuels while being able to control their motion, and showing adaptive changes of their speed and navigation to changes in the environment. It is also well-known that nanoparticles that are around 20-200 nm in size have advantages in overcoming cellular barriers and being internalized into cells. Therefore, lowering the size range of this stomatocyte nanomotor is crucial. However, the strict control of the size of vesicles in such a low regime as well as their shape transformation into folded stomatocyte structures is not trivial. In this study, we fabricated ultrasmall stomatocyte polymersomes with the size of around 150 nm, which could be a promising carrier for biomedical purposes. We demonstrated that the addition of PEG additive allows for both shape transformation of small polymersomes into stomatocytes and encapsulation of biologics. Biocatalyst catalase was encapsulated in the inner compartment of the nanomotor, protecting the enzyme while providing enough thrust to propel the motors. The ultrasmall stomatocyte motor system allowed propelled motion by converting H2O2 into O2 in the presence of only 2 mM H2O2, and the velocity of motors correlated to the O2 production. Compared to small stomatocyte nanomotors, ultrasmall stomatocyte motors demonstrate enhanced penetration across the vasculature model and increased uptake by HeLa cells in the presence of fuel.
History
Journal
ACS NanoVolume
13Issue
9Pagination
10191 - 10200Publisher
American Chemical SocietyLocation
Washington, D.C.Publisher DOI
Link to full text
ISSN
1936-0851eISSN
1936-086XLanguage
engPublication classification
C1.1 Refereed article in a scholarly journalUsage metrics
Categories
No categories selectedKeywords
PolymersomesNanomotorsBiocatalystCell uptakeOxygen productionBiomedical applicationsScience & TechnologyPhysical SciencesTechnologyChemistry, MultidisciplinaryChemistry, PhysicalNanoscience & NanotechnologyMaterials Science, MultidisciplinaryChemistryScience & Technology - Other TopicsMaterials ScienceAUTONOMOUS MOVEMENTSHAPE TRANSFORMATIONDRUG-DELIVERYMOTORSCELLNANOPARTICLESENCAPSULATIONDEPENDENCESTABILITYPROTEINS