Deakin University
Browse

EpCAM aptamer mediated cancer cell specific delivery of EpCAM siRNA using polymeric nanocomplex

Download (8.22 MB)
Version 2 2024-06-06, 11:48
Version 1 2015-08-18, 15:24
journal contribution
posted on 2024-06-06, 11:48 authored by N Subramanian, JR Kanwar, PK Athalya, N Janakiraman, V Khetan, RK Kanwar, S Eluchuri, S Krishnakumar
BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is overexpressed in solid tumors and regarded as a putative cancer stem cell marker. Here, we report that employing EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) dual approach, for the targeted delivery of siRNA to EpCAM positive cancer cells, efficiently inhibits cancer cell proliferation. RESULTS: Targeted delivery of siRNA using polyethyleneimine is one of the efficient methods for gene delivery, and thus, we developed a novel aptamer-PEI-siRNA nanocomplex for EpCAM targeting. PEI nanocomplex synthesized with EpCAM aptamer (EpApt) and EpCAM siRNA (SiEp) showed 198 nm diameter sized particles by dynamic light scattering, spherical shaped particles, of 151 ± 11 nm size by TEM. The surface charge of the nanoparticles was -30.0 mV using zeta potential measurements. Gel retardation assay confirmed the PEI-EpApt-SiEp nanoparticles formation. The difference in size observed by DLS and TEM could be due to coating of aptamer and siRNA on PEI nanocore. Flow cytometry analysis revealed that PEI-EpApt-SiEp has superior binding to cancer cells compared to EpApt or scramble aptamer (ScrApt) or PEI-ScrApt-SiEp. PEI-EpApt-SiEp downregulated EpCAM and inhibited selectively the cell proliferation of MCF-7 and WERI-Rb1 cells. CONCLUSIONS: The PEI nanocomplex fabricated with EpApt and siEp was able to target EpCAM tumor cells, deliver the siRNA and silence the target gene. This nanocomplex exhibited decreased cell proliferation than the scrambled aptamer loaded nanocomplex in the EpCAM expressing cancer cells and may have potential for EpCAM targeting in vivo.

History

Journal

Journal of biomedical science

Volume

22

Pagination

1-10

Location

London, Eng.

Open access

  • Yes

ISSN

1423-0127

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2015, BioMed Central

Issue

4

Publisher

BioMed Central

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC