In this study, we analyse the error performance of decode and forward (DF) and amplify and forward (AF) multi-way relay networks (MWRNs). The authors consider a MWRN with pair-wise data exchange protocol using binary phase shift keying (BPSK) modulation in both additive white Gaussian noise (AWGN) and Rayleigh fading channels. The authors quantify the possible error events in an L,-user DF or AF MWRN and derive accurate asymptotic bounds on the probability for the general case that a user incorrectly decodes the messages of exactly k (k∈ [1, L - 1]) users. They show that at high signal-to-noise ratio (SNR), the higher order error events (k ≥ 3) are less probable in AF MWRN, but all error events are equally probable in a DF MWRN. They derive the average BER of a user in a DF or AF MWRN in both AWGN and Rayleigh fading channels under high SNR conditions. Simulation results validate the correctness of the derived expressions. The authors results show that at medium to high SNR, DF MWRN provides better error performance than AF MWRN in AWGN channels even with a large number of users (e.g. L= 100). Whereas, AF MWRN outperforms DF MWRN in Rayleigh fading channels even for much smaller number of users (e.g. L> 10).
History
Journal
IET Communications
Volume
7
Pagination
1605-1616
Location
Stevenage, Eng.
ISSN
1751-8628
eISSN
1751-8636
Language
eng
Publication classification
C Journal article, C1.1 Refereed article in a scholarly journal
Copyright notice
2013, The Institution of Engineering and Technology