File(s) under permanent embargo

Evaluating the corrosion behaviour of magnesium alloy in simulated biological fluid by using SECM to detect hydrogen evolution

journal contribution
posted on 10.01.2015, 00:00 authored by S S Jamali, S E Moulton, D E Tallman, Maria ForsythMaria Forsyth, J Weber, G G Wallace
Scanning electrochemical microscopy (SECM) in surface generation/tip collection mode is investigated as an assessment tool for studying the corrosion behaviour of magnesium in simulated biological fluid. The technique provides a local map of hydrogen (H2) evolution which alone can be used as a direct measure of corrosion. The H2 generated during corrosion of magnesium is oxidized at the probe(i.e. a Pt ultra micro-electrode);with the magnitude of the current generated due to oxidation being indicative of the intensity of H2 evolution at a local scale on the magnesium surface. This method was calibrated using a cathodically polarized Pt disk to simulate H2 evolution in a controlled condition on a homogeneous surface. Potential interference from dissolving Mg or high local pH was also investigated. The technique was implemented for studying H2 evolution at the surface of AZ31 as a model Mg alloy.SECM results combined with SEM-EDX and profilometry data revealed that local domains of higher H2 evolution on the surface of AZ31 are in close proximityof the observed pitting sites.



Electrochimica acta




294 - 301




Amsterdam, Netherlands





Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2015, Elsevier