Deakin University
Browse

File(s) not publicly available

Evaluation of 4-amino 2-anilinoquinazolines against Plasmodium and other apicomplexan parasites in vitro and in a P. falciparum humanized NOD-scid IL2Rγnull mouse model of malaria

journal contribution
posted on 2019-01-01, 00:00 authored by Paul R Gilson, William Nguyen, William A Poole, Jose E Teixeira, Jennifer K Thompson, Kaiyuan Guo, Rebecca J Stewart, Trent Ashton, Karen L White, Laura M Sanz, Francisco-Javier Gamo, Susan A Charman, Sergio Wittlin, James Duffy, Christopher J Tonkin, Wai-Hong Tham, Brendan S Crabb, Brian M Cooke, Christopher D Huston, Alan F Cowman, Brad E Sleebs
A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.

History

Journal

Antimicrobial agents and chemotherapy

Volume

63

Pagination

e01804 - e01818

Publisher

American Society for Microbiology

Location

Washington, D.C.

eISSN

1098-6596

Language

eng

Publication classification

C Journal article; C1.1 Refereed article in a scholarly journal

Copyright notice

2019, American Society for Microbiology