Deakin University
Browse

File(s) under permanent embargo

Evaluation of electrochemical methods for determination of the seebeck coefficient of redox electrolytes

Version 2 2024-06-03, 20:18
Version 1 2015-11-26, 14:09
journal contribution
posted on 2024-06-03, 20:18 authored by R Koerver, DR MacFarlane, Jenny PringleJenny Pringle
Recent advances in thermoelectrochemical cells, which are being developed for harvesting low grade waste heat, have shown the promise of cobalt bipyridyl salts as the active redox couple. The Seebeck coefficient, Se, of a redox couple determines the open circuit voltage achievable, for a given temperature gradient, across the thermoelectrochemical cell. Thus, the accurate determination of this thermodynamic parameter is key to the development and study of new redox electrolytes. Further, techniques for accurate determination of Se using only one half of the redox couple reduces the synthetic requirements. Here, we compare three different experimental techniques for measuring Se of a cobalt tris(bipyridyl) redox couple in ionic liquid electrolytes. The use of temperature dependent cyclic voltammetry (CV) in isothermal and non-isothermal cells was investigated in depth, and the Se values compared to those from thermo-electromotive force measurements. Within experimental error, the Se values derived from CV methods were found to be in accordance with those obtained from electromotive force (emf) measurements. The applicability of cyclic voltammetry techniques for determining Se when employing only one part of the redox couple was demonstrated.

History

Journal

Electrochimica acta

Volume

184

Pagination

186-192

Location

Amsterdam, The Netherlands

ISSN

0013-4686

Language

eng

Publication classification

C Journal article, C1 Refereed article in a scholarly journal

Copyright notice

2015, Elsevier

Publisher

Elsevier

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC