Deakin University
Browse

File(s) under permanent embargo

Evolving coral reef conservation with genetic information

journal contribution
posted on 2014-01-01, 00:00 authored by M Beger, K A Selkoe, Eric Treml, P H Barber, S Von Der Heyden, E D Crandall, R J Toonen, C Riginos
Targeted conservation and management programs are crucial for mitigating anthropogenic threats to declining biodiversity. Although evolutionary processes underpin extant patterns of biodiversity, it is uncommon for resource managers to explicitly consider genetic data in conservation prioritization. Genetic information is inherently relevant to management because it describes genetic diversity, population connectedness, and evolutionary history; thereby typifying their behavioral traits, physiological climate tolerance, evolutionary potential, and dispersal ability. Incorporating genetic information into spatial conservation prioritization starts with reconciling the terminology and techniques used in genetics and conservation science. Genetic data vary widely in analyses and their interpretations can be challenging even for experienced geneticists. Therefore, identifying objectives, decision rules, and implementations in decision support tools specifically for management using genetic data is challenging. Here, we outline a framework for eight genetic system characteristics, their measurement, and how they could be incorporated in spatial conservation prioritization for two contrasting objectives: biodiversity preservation vs maintaining ecological function and sustainable use. We illustrate this framework with an example using data from Tridacna crocea (Lamarck, 1819) (boring giant clam) in the Coral Triangle. We find that many reefs highlighted as conservation priorities with genetic data based on genetic subregions, genetic diversity, genetic distinctness, and connectivity are not prioritized using standard practices. Moreover, different characteristics calculated from the same samples resulted in different spatial conservation priorities. Our results highlight that omitting genetic information from conservation decisions may fail to adequately represent processes regulating biodiversity, but that conservation objectives related to the choice of genetic system characteristics require careful consideration.

History

Journal

Bulletin of marine science

Volume

90

Issue

1

Pagination

159 - 185

Publisher

Rosenstiel School of Marine and Atmospheric Science, University of Miami

Location

Miami, Fla.

ISSN

0007-4977

eISSN

1553-6955

Language

eng

Publication classification

C Journal article; C1.1 Refereed article in a scholarly journal

Copyright notice

2014, Rosenstiel School of Marine & Atmospheric Science of the University of Miami