Excitotoxic profile of LY339434, a GluR5 agonist, in cultured murine cortical neurons
Version 2 2024-06-18, 01:29Version 2 2024-06-18, 01:29
Version 1 2017-08-03, 11:50Version 1 2017-08-03, 11:50
journal contribution
posted on 2024-06-18, 01:29authored byRX Moldrich, NS Cheung, CJ Pascoe, SR Baker, C Pedregal, PM Beart
The neurotoxic profile of (2S,4R, 6E)-2-amino-4-carboxy-7-(2-naphthyl)hept-6-enoic acid (LY339434), a low-affinity kainate receptor subtype 5 (GluR5) agonist at recombinant human glutamate receptors, was evaluated to investigate the involvement of GluR5 in excitotoxic neuronal death. Murine cortical neurons were exposed to treatments for 24 h and assessed by a cell viability assay and phase-contrast microscopy. LY339434 (1-1000 microM) caused a concentration-dependent decrease in cell viability (EC(50)=11.4+/-1.2 microM) that was only attenuated by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine (MK-801, 10 microM), but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 microM) or 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466, 20 microM). Labeling with nucleic acid binding dyes revealed that LY339434 induced few apoptotic-like characteristics. These findings indicate that in cultured murine cortical neurons, LY339434 acts predominantly through N-methyl-D-aspartate (NMDA) receptors rather than GluR5 to effect neuronal death that is rapid and involves predominantly necrosis rather than morphological apoptosis.