Deakin University
Browse

File(s) under permanent embargo

Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling

journal contribution
posted on 2018-04-01, 00:00 authored by Lewan ParkerLewan Parker, Adam Trewin, I Levinger, Chris ShawChris Shaw, N K Stepto
OBJECTIVES: Redox homeostasis and redox-sensitive protein signaling play a role in exercise-induced adaptation. The effects of sprint-interval exercise (SIE), high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE), on post-exercise plasma redox status are unclear. Furthermore, whether post-exercise plasma redox status reflects skeletal muscle redox-sensitive protein signaling is unknown. DESIGN: In a randomized crossover design, eight healthy adults performed a cycling session of HIIE (5×4min at 75% Wmax), SIE (4×30s Wingate's), and CMIE work-matched to HIIE (30min at 50% of Wmax). METHODS: Plasma hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) activity, and catalase activity were measured immediately post, 1h, 2h and 3h post-exercise. Plasma redox status biomarkers were correlated with phosphorylation of skeletal muscle p38-MAPK, JNK, NF-κB, and IκBα protein content immediately and 3h post-exercise. RESULTS: Plasma catalase activity was greater with SIE (56.6±3.8Uml-1) compared to CMIE (42.7±3.2, p<0.01) and HIIE (49.0±5.5, p=0.07). Peak plasma H2O2 was significantly (p<0.05) greater after SIE (4.6±0.6nmol/ml) and HIIE (4.1±0.4) compared to CMIE (3.3±0.5). Post-exercise plasma TBARS and SOD activity significantly (p<0.05) decreased irrespective of exercise protocol. A significant positive correlation was detected between plasma catalase activity and skeletal muscle p38-MAPK phosphorylation 3h post-exercise (r=0.40, p=0.04). No other correlations were detected (all p>0.05). CONCLUSIONS: Low-volume SIE elicited greater post-exercise plasma catalase activity compared to HIIE and CMIE, and greater H2O2 compared to CMIE. Plasma redox status did not, however, adequately reflect skeletal muscle redox-sensitive protein signaling.

History

Journal

Journal of science and medicine in sport

Volume

21

Issue

4

Pagination

416 - 421

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

1440-2440

eISSN

1878-1861

Language

eng

Publication classification

C Journal article; C1 Refereed article in a scholarly journal

Copyright notice

2017, Sports Medicine Australia

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC