File(s) not publicly available
Exerting Cost-Sensitive and Feature Creation Algorithms for Coronary Artery Disease Diagnosis
One of the main causes of death the world over is the family of cardiovascular diseases, of which coronary artery disease (CAD) is a major type. Angiography is the principal diagnostic modality for the stenosis of heart arteries; however, it leads to high complications and costs. The present study conducted data-mining algorithms on the Z-Alizadeh Sani dataset, so as to investigate rule based and feature based classifiers and their comparison, and the reason for the effectiveness of a preprocessing algorithm on a dataset. Misclassification of diseased patients has more side effects than that of healthy ones. To this end, this paper employs 10-fold cross-validation on cost-sensitive algorithms along with base classifiers of Naïve Bayes, Sequential Minimal Optimization (SMO), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and C4.5 and the results show that the SMO algorithm yielded very high sensitivity (97.22%) and accuracy (92.09%) rates.