A rig was constructed to carry out compression of an aluminum cylinder with a monotonically rotating platen. The tests carried out showed that the compression load decreased and the side wall bulge severity reduced when the die was rotated. Not all the work supplied by the rotating dies was transferred to the work-piece; circumferential slippage was frequently observed at the die/material interface. This slippage was quantified by comparing measurements made during interrupted testing with the angular velocity of the die. A compound velocity field based on an exponential cusp description of the barreling was employed in an upper bound analysis. An approximate analytical solution was obtained for the degree of barreling and the compression pressure. The model is able to reproduce the decrease in barreling and compression loads with increasing die rotation.