Deakin University
Browse
experimentallyvalidated-2022.pdf (8.5 MB)

Experimentally validated vibro-acoustic modeling of 3D bio-printed grafts for potential use in human tympanic membrane regeneration

Download (8.5 MB)
journal contribution
posted on 2022-03-01, 00:00 authored by A A Rostam-Alilou, H Jafari, Ali ZolfagharianAli Zolfagharian, A Serjouei, M Bodaghi
Three-dimensional (3D) bioprinting is a pioneering field of tissue engineering obtaining a special role in most medical engineering fields. Otology is a medicine branch that needs bioprinting technology to receive aids for the reconstruction of aesthetic necessities of the ear and treating hearing loss diseases due to several pathological reasons such as tympanic membrane (TM) perforation. In this work, computational dynamic simulations of 3D printed TM grafts are presented. The main purpose of numerical modeling of these experimentally validated composite scaffolds is to demonstrate the worth of simulation in shortening the design time and decreasing testing costs of biomedical engineering projects. The simulated 3D printed TM grafts were fabricated in two main architectural categories using three different polymeric materials of polydimethylsiloxanes (PDMS), flex polylactic acid (PLA), and polycaprolactone (PCL) with uniform infilling of fibrincollagen composite hydrogels. As a numerical and dynamic validation study, firstly, a finite element (FE) simulation of the artificial TM grafts is carried out for a vibro-acoustic analysis by the COMSOL Multiphysics software package. Then a comparative study of results obtained from the dynamic modeling is performed with a set of existing data taken from experimental validation test results from digital optoelectronic holography (DOEH) and laser Doppler vibrometry (LDV). Observations show a good correlation between the acoustic behaviors of in vitro tested 3D printed TM grafts and computational models in both frequency domain motion and normalized velocity patterns. Satisfying correlation between acoustic properties of simulated TM grafts and experimental test results shows potential applications of printed TM grafts in tympanoplasty.

History

Journal

Bioprinting

Volume

25

Article number

e00186

Pagination

1 - 10

Publisher

Elsevier

Location

Amsterdam, The Netherlands

ISSN

2405-8866

Language

eng

Publication classification

C1 Refereed article in a scholarly journal

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC