File(s) under permanent embargo
Exponential stability of positive neural networks in bidirectional associative memory model with delays
journal contribution
posted on 2019-07-01, 00:00 authored by Hien Le, L D Hai-AnThis paper is concerned with the problem of exponential stability of positive neural networks in bidirectional associative memory (BAM) model with multiple time-varying delays and nonlinear self-excitation rates. On the basis of a systematic approach involving extended comparison techniques via differential inequalities, we first prove the positivity of state trajectories initializing from a positive cone called the admissible set of initial conditions. In combination with the use of Brouwer's fixed point theorem and M-matrix theory, we then derive conditions for the existence and global exponential stability of a unique positive equilibrium of the model. An extension to the case of BAM neural networks with proportional delays is also presented. The effectiveness of the obtained results is illustrated by a numerical example with simulations.