The influenza A virus non-structural protein NS1 was produced using a copper-inducible expression system in the yeast Saccharomyces cerevisiae. The protein produced had a molecular weight of 26 kDa by SDS-PAGE and was reactive with anti-NS1 antisera. The recombinant NS1 protein was targetted to the nucleolus/nuclear envelope fraction of the yeast cell nucleus, showing that its localisation signals remain functional in yeast. In addition, immune-electron microscopy detected cytoplasmic inclusions reminiscent of those seen in cells infected with some influenza strains. The NS1 protein was shown to be capable of in vivo self-interaction which probably forms the basis of its propensity to form inclusions. Expression of the protein was found to be toxic to yeast cells expressing it, supporting a role for the protein in the shutdown of influenza virus-infected cells. Deletion mapping of NS1 pointed to 2 regions of the molecule being important for this toxicity: a basic C-terminal stretch which has been shown to act as a nuclear localisation signal, and an N-terminal region implicated in RNA binding.