Federated Deep Learning for the Diagnosis of Cerebellar Ataxia: Privacy Preservation and Auto-Crafted Feature Extractor
Version 2 2024-06-06, 02:47Version 2 2024-06-06, 02:47
Version 1 2022-04-14, 08:16Version 1 2022-04-14, 08:16
journal contribution
posted on 2024-06-06, 02:47 authored by T Ngo, DC Nguyen, Pubudu PathiranaPubudu Pathirana, LA Corben, MB Delatycki, M Horne, DJ Szmulewicz, M RobertsFederated Deep Learning for the Diagnosis of Cerebellar Ataxia: Privacy Preservation and Auto-Crafted Feature Extractor
History
Journal
IEEE Transactions on Neural Systems and Rehabilitation EngineeringVolume
30Pagination
803-811Location
Piscataway, N.J.Publisher DOI
Link to full text
ISSN
1534-4320eISSN
1558-0210Language
EnglishPublication classification
C1 Refereed article in a scholarly journalPublisher
Institute of Electrical and Electronics EngineersUsage metrics
Categories
Keywords
Australiacerebellar ataxia (CA)Cloud computingData modelsDeep learningDeep learning (DL)EngineeringEngineering, BiomedicalFeature extractionfederated learning (FL)FRIEDREICH ATAXIAImage sensorsLife Sciences & BiomedicineQUANTITATIVE ASSESSMENTRehabilitationScience & TechnologySensorsTechnologytransfer learning4003 Biomedical engineering
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC