Microplastics (MPs), particularly fibrous MPs, have emerged as a significant environmental concern due to their pervasive presence in aquatic and terrestrial ecosystems. The textile industry is a significant contributor to MP pollution, particularly through the production of synthetic fibers and natural/synthetic blends, which release substantial amounts of fibrous MPs. Among the various types of MPs, fibrous MPs account for approximately 49–70% of the total MP load found in wastewater globally, primarily originating from textile manufacturing processes and the domestic laundering of synthetic fabrics. MP shedding poses a significant challenge for environmental management, requiring a comprehensive examination of the mechanisms and strategies for the mitigation involved. To address the existing knowledge gaps regarding MP shedding during the textile production processes, this brief review examines the current state of MP shedding during textile production, covering both dry and wet processes, and identifies the sources and pathways of MPs from industrial wastewater treatment plants to the environment. It further provides a critical evaluation of the existing recycling and upcycling technologies applicable to MPs, highlighting their current limitations and exploring their potential for future applications. Additionally, it explores the potential for integrating sustainable practices and developing regulatory frameworks to facilitate the transition towards a circular economy within the textile industry. Given the expanding application of textiles across various sectors, including medical, agricultural, and environmental fields, the scope of microplastic pollution extends beyond conventional uses, necessitating urgent attention to the impact of fibrous MP release from both synthetic and bio-based textiles. This brief review consolidates the current knowledge and outlines the critical research gaps to support stakeholders, policymakers, and researchers in formulating effective, science-based strategies for reducing textile-derived microplastic pollution and advancing environmental sustainability.