Deakin University
norambuena-fishoilreplacement-2013.pdf (347.31 kB)

Fish oil replacement in current aquaculture feed : is cholesterol a hidden treasure for fish nutrition?

Download (347.31 kB)
journal contribution
posted on 2013-12-04, 00:00 authored by Fernando Norambuena, Michael Lewis, N Hamid, Karen Maree Hermon, John DonaldJohn Donald, Giovanni Turchini
Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol, H-Chol) or without (low cholesterol, L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid b-oxidation were recorded, whilst in LChol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid b-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid D-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.









1 - 9


Public Library of Science


San Francisco, Calif.





Publication classification

C1 Refereed article in a scholarly journal

Copyright notice

2013, Public Library of Science