Forecasting long-term precipitation for water resource management: a new multi-step data-intelligent modelling approach
Version 2 2024-06-03, 11:50Version 2 2024-06-03, 11:50
Version 1 2020-08-21, 19:13Version 1 2020-08-21, 19:13
journal contribution
posted on 2024-06-03, 11:50 authored by M Ali, RC Deo, Yong XiangYong Xiang, Y Li, ZM YaseenForecasting long-term precipitation for water resource management: a new multi-step data-intelligent modelling approach
History
Journal
Hydrological Sciences JournalVolume
65Pagination
2693-2708Location
Abingdon, Eng.Publisher DOI
ISSN
0262-6667eISSN
2150-3435Language
EnglishPublication classification
C1 Refereed article in a scholarly journalIssue
16Publisher
TAYLOR & FRANCIS LTDUsage metrics
Categories
Keywords
Science & TechnologyPhysical SciencesWater Resourcesmulti-step modelprecipitation forecastinglarge-scale climate indicesnon-dominated sorting genetic algorithm (NSGA)singular value decomposition (SVD)random forest (RF)water resources managementARTIFICIAL NEURAL-NETWORKSTANDARDIZED PRECIPITATIONGENETIC ALGORITHMPARTICLE SWARMAUSTRALIAN RAINFALLCLIMATE SIGNALSTIME-SERIESDIPOLE MODESTREAMFLOWMACHINE4005 Civil engineering3707 Hydrology
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC