Free-ranging eastern chipmunks (Tamias striatus) infected with bot fly (Cuterebra emasculator) larvae have higher resting but lower maximum metabolism
journal contribution
posted on 2012-03-01, 00:00authored byVincent Careau, D Garant, M Humphries
Given the ubiquity and evolutionary importance of parasites, their effect on the energy budget of mammals remains surprisingly unclear. The eastern chipmunk (Tamias striatus (L., 1758)) is a burrowing rodent that is commonly infected by cuterebrid bot fly (Cuterebra emasculator Fitch, 1856) larvae. We measured resting metabolic rate (RMR) and cold-induced [Vo.sub.2]-max (under heliox atmosphere) in 20 free-ranging individuals, of which 4 individuals were infected by one or two larva. We found that RMR was significantly higher in chipmunks infected by bot fly larvae (mean [+ or -] SE = 0.88 [+ or -] 0.05 W) than in uninfected individuals (0.74 [+ or -] 0.02 W). In contrast, V[O.sub.2]-max was significantly lower in chipmunks infected by bot fly larvae (4.96 [+ or -] 0.70 W) than in uninfected individuals (6.37 [+ or -] 0.16 W). Consequently, the aerobic scope (ratio of [Vo.sub.2]-max to RMR) was negatively correlated with the number of bot fly larvae (infected individuals = 5.74 [+ or -] 1.03 W; noninfected individuals = 8.67 [+ or -] 0.26 W). Finally, after accounting for the effects of body mass and bot fly parasitism on RMR and [Vo.sub.2]-max, there was no correlation between the two variables among individuals within our population. In addition to providing the first estimate of [Vo.sub.2]-max in T. striatus, these results offer additional evidence that bot fly parasitism has significant impacts on the metabolic ecology of this host species.