Fusing data mining, machine learning and traditional statistics to detect biomarkers associated with depression
Version 3 2024-06-17, 17:30Version 3 2024-06-17, 17:30
Version 2 2024-06-06, 09:25Version 2 2024-06-06, 09:25
Version 1 2016-03-09, 14:20Version 1 2016-03-09, 14:20
journal contribution
posted on 2024-06-17, 17:30 authored by JF Dipnall, Julie PascoJulie Pasco, Michael BerkMichael Berk, Lana WilliamsLana Williams, Seetal DoddSeetal Dodd, Felice JackaFelice Jacka, D MeyerFusing data mining, machine learning and traditional statistics to detect biomarkers associated with depression
History
Journal
PLoS ONEVolume
11Season
Article Number : e0148195Article number
ARTN e0148195Location
United StatesOpen access
- Yes
ISSN
1932-6203eISSN
1932-6203Language
EnglishPublication classification
C Journal article, C1 Refereed article in a scholarly journalCopyright notice
2016, The AuthorsIssue
2Publisher
PUBLIC LIBRARY SCIENCEUsage metrics
Categories
No categories selectedKeywords
Science & TechnologyMultidisciplinary SciencesScience & Technology - Other TopicsCELL DISTRIBUTION WIDTHMULTIPLE IMPUTATIONREGRESSIONCLASSIFICATIONBILIRUBINRISKANTIOXIDANTDISEASEINFLAMMATIONDIAGNOSIS110319 Psychiatry (incl Psychotherapy)920410 Mental HealthFaculty of HealthSchool of MedicineInnovation in Mental and Physical Health and Clinical TreatmentMD Multidisciplinary3202 Clinical sciences420313 Mental health services200409 Mental health
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC