Geometry of compensatory feeding and water consumption in Drosophila melanogaster
journal contribution
posted on 2012-01-01, 00:00authored byBenjamin Fanson, S Yap, P Taylor
Feeding behaviour is an expression of an animal’s underlying nutritional strategy. The study of feeding decisions can hence delineate nutritional strategies. Studies of Drosophila melanogaster feeding behaviour have yielded conflicting accounts, and little is known about how nutrients affect feeding patterns in this important model species. Here, we conducted two experiments to characterize nutrient prioritization and regulation. In a choice experiment, we allowed female flies to self-regulate their intake of yeast, sucrose and water by supplying individual flies with three microcapillary tubes: one containing only yeast of varying concentrations, another with just sucrose of varying concentrations, and the last with just water. Flies tightly regulated yeast and sucrose to a constant ratio at the expense of excess water intake, indicating that flies prioritize macronutrient regulation over excess water consumption. To determine the relative importance of yeast and sucrose, in a no-choice experiment, we provided flies with two microcapillary tubes: the first with one of the 28 diets varying in yeast and sucrose content and the other with only water. Flies increased total water intake in relation to yeast consumption but not sucrose consumption. Additionally, flies increased diet intake as diet concentration decreased and as the ratio of sugar to yeast equalized. Using a geometric scaling approach, we found that the patterns of diet intake can be explained by flies prioritizing protein and carbohydrates equally and by the lack of substitutability between the nutrients. We conclude by illustrating how our results harmonize conflicting results in the literature once viewed in a two-dimensional diet landscape.